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Sulfurane (1) has been proposed as an intermediate in various
reactions of organosulfur compounds.1 A number of achiral
sulfuranes have been prepared, and the structural as well as the
chemical properties were investigated.2 However, the stereo-

chemistry of chiral sulfuranes and stereochemical process of their
reactions have been scarcely studied.3,4 We designed a series of
chiral alkoxyacyloxyspirosulfuranes using the 2-exo-hydroxy-10-
bornyl group as a chiral ligand to study the stereochemistry of
sulfuranes and their reactions. Herein we report the synthesis,
structural determination and the mechanistic research on the
hydrolysis of optically pure spirosulfuranes.
We synthesized the chiral spiro-λ4-sulfuranes (3a-e) as il-

lustrated in Scheme 1.5 Spirosulfuranes (3a-d) were obtained
as colorless crystals in high yield and as single diastereomers.
An X-ray crystallographic analysis of3a indicated that the
spirosulfuranes have a slightly distorted trigonal bipyramidal
(TBP) structure as shown in Figure 1.6

To give a deep insight into the stereochemistry of the
nucleophilic reactions of hypervalent sulfur compounds and how
the coordinated groups bound to the sulfur atom affect this
process, we carried out the hydrolysis of spirosulfurane (3a) under
various conditions (Scheme 2 and Table 1). Compound3awas
easily hydrolyzed under a basic condition (1 N NaOH) to give
optically pure sulfoxide (4) as a single diastereomer (Table 1,

entry 1). The (R) absolute configuration of the sulfur atom in
sulfoxide (4) has been determined by an X-ray analysis (Figure
1).7 In contrast, hydrolysis of spirosulfurane (3a) under an acidic
condition (1 N HCl) gaVe sulfoxide (5), also as a single
diastereomer but with an opposite absolute configuration at the
sulfur atom(Table 1, entry 2). The stereochemistry of sulfoxide
(5) was also clearly determined by an X-ray analysis (Figure 1).8

Next, we confirmed that the sulfoxides did not isomerize under
the conditions employed for the hydrolysis. Stirring the sulfoxides
(4 or 5) under basic or acidic conditions afforded only the starting
materials (Table 1, entries 3-6).8 These results clearly rule out
the possibility of pH-dependent isomerization of these sulfoxides,
and we, therefore, conclude that the chiral sulfoxides obtained
here are stereoselectively formed by the hydrolysis.
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Kapovits, I.; Rábai, J.; Szabo´, D.; Czakó, K.; Kucsman, AÄ .; Argay, G.; Fülöp,
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Scheme 1

Figure 1. ORTEP drawings of the compounds3a, 4, and5 with 50%
thermal ellipsoids.
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Finally, we performed the hydrolysis of spirosulfurane (3a)
with isotopically labeled H2O to see whether and where the
oxygen atom of H2O attack the spirosulfurane. Spirosulfurane
(3a) was hydrolyzed under basic or acidic conditions in the
presence of H218O (97 atom %18O) followed by treatment with
diazomethane to give methyl esters6-18O and 7-18O.9 Mass
spectroscopic analyses revealed that6-18O and7-18O are enriched
with 18O to a significant extent (70% and 91% incorporation,
respectively).9 On the other hand, the sulfoxides (4-17O and
5-17O) obtained by hydrolysis of3a with H2

17O (20.3 atom %
17O) under basic or acidic conditions showed signals with chemical
shift of -9.2 and -8.1 ppm in their 17O NMR spectra,
respectively. The values of the chemical shift strongly indicate
that under both conditions the oxygen atoms from H2

17O were
bound to the sulfur atoms.10 Based on these results, we concluded
that the oxygen of H2O attacked sulfur atom directly in the
hydrolysis.
We propose the mechanism of these reactions as follows:

hydrolysis under basic condition may proceed through the attack
of hydroxide ion onto the central sulfur atom to give an
intermediate (8) (Scheme 3).11 Cleavage of S-O (acyloxy) bond12

and isomerization around the sulfur center generates the penta-
coordinate intermediate (9) with the hydroxyl group at the apical
position.13 Then, deprotonation and tandem breaking of the S-O
(alkoxy) bond takes place to give the highly diastereoselective
formation of the sulfoxide (4) with R absolute configuration.

Under the acidic condition, the reaction may proceed through the
initial protonation of the spirosulfurane at the oxygen of alkoxy,14

then attack of H2O to the sulfur atom takes place, and a
hexacoordinate sulfur intermediate (11) is formed (Scheme 4).
Cleavage of the S-O (alkoxy) bond of the intermediate (11) and
isomerization around the sulfur center produce an intermediate
(12) with the hydroxyl group at the apical position.13 Final
deprotonation and consecutive breaking of the S-O (acyloxy)
bond gave sulfoxide (5) with Sabsolute configuration at the sulfur
atom.15

In summary, an optically pure sulfurane (3a) was stereoselec-
tively hydrolyzed under basic and acidic conditions to give the
sulfoxides (4 and 5) with the completely opposite absolute
configuration at sulfur atom. We proposed the mechanism of
the reaction which accounts for the observed stereochemical
outcome. The results obtained here would be helpful for the
understanding of the stereochemistry of the nucleophilic reaction
concerning the hypervalent compounds.
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Table 1. The Reaction of3a, 4, and5 under Basic or Acidic
Conditions

entry substrate condition producta yield (%)

1 3a 1 N NaOH, 0°C, 0.5 h 4 88
2 3a 1 N HCl, rt,b 48 h 5 98
3 4 1 N NaOH, rt,b 48 h 4 92
4 4 1 N HCl, rt,b 48 h 4 98
5 5 1 N NaOH, rt,b 48 h 5 96
6 5 1 N HCl, rt,b 48 h 5 98

aNo isomer was detected by an1H NMR analysis.bRoom temper-
ature) rt.
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